Abstract

Internet of Medical Things (IoMT) is the collection of medical devices and related applications which link the healthcare IT systems through online computer networks. In the field of diagnosis, medical image classification plays an important role in prediction and early diagnosis of critical diseases. Medical images form an indispensable part of a patient's health record which can be applied to control, handle and treat the diseases. But, classification of images is a challenging task in computer-based diagnostics. In this research article, we have introduced a improved classifier i.e., Optimal Deep Learning (DL) for classification of lung cancer, brain image, and Alzheimer's disease. The researchers proposed the Optimal Feature Selection based Medical Image Classification using DL model by incorporating preprocessing, feature selection and classification. The main goal of the paper is to derive an optimal feature selection model for effective medical image classification. To enhance the performance of the DL classifier, Opposition-based Crow Search (OCS) algorithm is proposed. The OCS algorithm picks the optimal features from pre-processed images, here Multi-texture, grey level features were selected for the analysis. Finally, the optimal features improved the classification result and increased the accuracy, specificity and sensitivity in the diagnosis of medical images. The proposed results were implemented in MATLAB and compared with existing feature selection models and other classification approaches. The proposed model achieved the maximum performance in terms of accuracy, sensitivity and specificity being 95.22%, 86.45 % and 100% for the applied set of images.

Highlights

  • In recent days, medical informatics has become a hot research topic in which Information Technology meets the needs of human healthcare requirements

  • A novel classification method was proposed to classify the medical images by choosing the best features from the images

  • A novel system of clinical image classification was presented on the basis of soft set to accomplish better execution regarding accuracy, precision and computational speed

Read more

Summary

Introduction

Medical informatics has become a hot research topic in which Information Technology meets the needs of human healthcare requirements. To achieve better classification performance, both descriptiveness as well as discriminative power of the extracted features are critical when it comes to image classification problems. This machine learning section is necessary because of its wide range of applications in the field of data mining, forecasting models, recovery of media information, etc. The medical image databases are used for image classification and for teaching purposes.

Objectives
Methods
Findings
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.