Abstract

This paper studies false data injection attacks against automatic generation control (AGC), a fundamental control system used in all power grids to maintain the grid frequency at a nominal value. Attacks on the sensor measurements for AGC can cause frequency excursion that triggers remedial actions such as disconnecting customer loads or generators, leading to blackouts and potentially costly equipment damage. We derive an attack impact model and analyze an optimal attack, consisting of a series of false data injections, that minimizes the remaining time until the onset of remedial actions, leaving the shortest time for the grid to counteract. We show that, based on eavesdropped sensor data and a few feasible-to-obtain system constants, the attacker can learn the attack impact model and achieve the optimal attack in practice. This paper provides essential understanding on the limits of physical impact of false data injections on power grids, and provides an analysis framework to guide the protection of sensor data links. Our analysis and algorithms are validated by experiments on a physical 16-bus power system testbed and extensive simulations based on a 37-bus power system model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.