Abstract

Current perception systems of intelligent vehicles not only make use of visual sensors, but also take advantage of depth sensors. Extrinsic calibration of these heterogeneous sensors is required for fusing information obtained separately by vision sensors and light detection and ranging (LIDARs). In this paper, an optimal extrinsic calibration algorithm between a binocular stereo vision system and a 2-D LIDAR is proposed. Most extrinsic calibration methods between cameras and a LIDAR proceed by calibrating separately each camera with the LIDAR. We show that by placing a common planar chessboard with different poses in front of the multisensor system, the extrinsic calibration problem is solved by a 3-D reconstruction of the chessboard and geometric constraints between the views from the stereovision system and the LIDAR. Furthermore, our method takes sensor noise into account that it provides optimal results under Mahalanobis distance constraints. To evaluate the performance of the algorithm, experiments based on both computer simulation and real datasets are presented and analyzed. The proposed approach is also compared with a popular camera/LIDAR calibration method to show the benefits of our method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call