Abstract
Extended Jacobian inverse kinematics algorithms for redundant robotic manipulators are defined by combining the manipulator's kinematics with an augmenting kinematics map in such a way that the combination becomes a local diffeomorphism of the augmented taskspace. A specific choice of the augmentation relies on the optimal approximation by the extended Jacobian of the Jacobian pseudoinverse (the Moore-Penrose inverse of the Jacobian). In this paper, we propose a novel formulation of the approximation problem, rooted conceptually in the Riemannian geometry. The resulting optimality conditions assume the form of a Poisson equation involving the Laplace-Beltrami operator. Two computational examples illustrate the theory.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.