Abstract
This work is concerned with the optimization of Laguerre bases for the orthonormal series expansion of discrete-time Volterra models. The aim is to minimize the number of Laguerre functions associated with a given series truncation error, thus reducing the complexity of the resulting finite-dimensional representation. Fu and Dumont (IEEE Trans. Automatic Control 38(6) (1993) 934) indirectly approached this problem in the context of linear systems by minimizing an upper bound for the error resulting from the truncated Laguerre expansion of impulse response models, which are equivalent to first-order Volterra models. A generalization of the work mentioned above focusing on Volterra models of any order is presented in this paper. The main result is the derivation of analytic strict global solutions for the optimal expansion of the Volterra kernels either using an independent Laguerre basis for each kernel or using a common basis for all the kernels.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.