Abstract

We consider the execution of portfolio transactions with the aim of minimizing a combination of volatility risk and transaction costs arising from permanent and temporary market impact. For a simple linear cost model, we explicitly construct the efficient frontier in the space of time-dependent liquidation strategies, which have minimum expected cost for a given level of uncertainty. We may then select optimal strategies either by minimizing a quadratic utility function, or by minimizing Value at Risk. The latter choice leads to the concept of Liquidity-adjusted VAR, or L-VaR, that explicitly considers the best tradeoff between volatility risk and liquidation costs. ∗We thank Andrew Alford, Alix Baudin, Mark Carhart, Ray Iwanowski, and Giorgio De Santis (Goldman Sachs Asset Management), Robert Ferstenberg (ITG), Michael Weber (Merrill Lynch), Andrew Lo (Sloan School, MIT), and George Constaninides (Graduate School of Business, University of Chicago) for helpful conversations. This paper was begun while the first author was at the University of Chicago, and the second author was first at Morgan Stanley Dean Witter and then at Goldman Sachs Asset Management. †University of Toronto, Departments of Mathematics and Computer Science; almgren@math.toronto.edu ‡ICor Brokerage and Courant Institute of Mathematical Sciences; Neil.Chriss@ICorBroker.com

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.