Abstract

BackgroundAutologous mobilised peripheral blood stem cell (PBSC) transplantation is now a standard approach in the treatment of haematological diseases to reconstitute haematopoiesis following myeloablative chemotherapy. However, there remains a period of severe neutropenia and thrombocytopenia before haematopoietic reconstitution is achieved. Ex vivo expanded PBSC have been employed as an adjunct to unmanipulated HSC transplantation, but have tended to be produced using complex cytokine mixtures aimed at multilineage (neutrophil and megakaryocyte) progenitor expansion. These have been reported to reduce or abrogate neutropenia but have little major effect on thrombocytopenia. Selective megakaryocyte expansion has been to date ineffective in reducing thrombocytopenia. This study was implemented to evaluate neutrophil specific rather than multilineage ex vivo expansion of PBSC for specifically focusing on reduction or abrogation of neutropenia.MethodsCD34+ cells (PBSC) were enriched from peripheral blood mononuclear cells following G-CSF-mobilisation and cultured with different permutations of cytokines to determine optimal cytokine combinations and doses for expansion and functional differentiation and maturation of neutrophils and their progenitors. Results were assessed by cell number, morphology, phenotype and function.ResultsA simple cytokine combination, SCF + Flt3-L + G-CSF, synergised to optimally expand and mature neutrophil progenitors assessed by cell number, phenotype, morphology and function (superoxide respiratory burst measured by chemiluminescence). G-CSF appears mandatory for functional maturation. Addition of other commonly employed cytokines, IL-3 and IL-6, had no demonstrable additive effect on numbers or function compared to this optimal combination. Addition of TPO, commonly included in multilineage progenitor expansion for development of megakaryocytes, reduced the maturation of neutrophil progenitors as assessed by number, morphology and function (respiratory burst activity).ConclusionGiven that platelet transfusion support is available for autologous PBSC transplantation but granulocyte transfusion is generally lacking, and that multilineage expanded PBSC do not reduce thrombocytopenia, we suggest that instead of multilineage expansion selective neutrophil expansion based on this relatively simple cytokine combination might be prioritized for development for clinical use as an adjunct to unmanipulated PBSC transplantation to reduce or abrogate post-transplant neutropenia.

Highlights

  • Autologous mobilised peripheral blood stem cell (PBSC) transplantation is a standard approach in the treatment of haematological diseases to reconstitute haematopoiesis following myeloablative chemotherapy

  • Use of cytokine mobilised peripheral blood stem cells (PBSC) has generally reduced the period of post transplant neutropenia and thrombocytopenia compared to use of bone marrow haematopoietic stem cells (HSC)

  • Identification of mobilised PBSC by CD34+ expression and collection by leukapheresis has demonstrated that the period of neutropenia and thrombocytopenia may be shortened by increasing the dose of CD34+ cells transplanted

Read more

Summary

Introduction

Autologous mobilised peripheral blood stem cell (PBSC) transplantation is a standard approach in the treatment of haematological diseases to reconstitute haematopoiesis following myeloablative chemotherapy. Ex vivo expanded PBSC have been employed as an adjunct to unmanipulated HSC transplantation, but have tended to be produced using complex cytokine mixtures aimed at multilineage (neutrophil and megakaryocyte) progenitor expansion. These have been reported to reduce or abrogate neutropenia but have little major effect on thrombocytopenia. There still remains a period of clinically significant neutropenia and thrombocytopenia which cannot be reduced by increasing CD34+ cell doses This is probably related to the minimum time required for adequate post transplant expansion and maturation of relevant HSC in vivo. Several groups have investigated ex vivo expansion of PBSC prior to transplantation, to attempt to further reduce or abrogate post transplant neutropenia and thrombocytopenia, and which has been the subject of a number of recent commentaries and reviews[1,2,3,4,5]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.