Abstract

The problem of estimating the mean of random functions based on discretely sampled data arises naturally in functional data analysis. In this paper, we study optimal estimation of the mean function under both common and independent designs. Minimax rates of convergence are established and easily implementable rate-optimal estimators are introduced. The analysis reveals interesting and different phase transition phenomena in the two cases. Under the common design, the sampling frequency solely determines the optimal rate of convergence when it is relatively small and the sampling frequency has no effect on the optimal rate when it is large. On the other hand, under the independent design, the optimal rate of convergence is determined jointly by the sampling frequency and the number of curves when the sampling frequency is relatively small. When it is large, the sampling frequency has no effect on the optimal rate. Another interesting contrast between the two settings is that smoothing is necessary under the independent design, while, somewhat surprisingly, it is not essential under the common design.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.