Abstract

A novel theoretical result on estimation of the local time and the occupation time measure of an α-stable Lévy process with $\alpha \in (1,2)$ is presented. The approach is based upon computing the conditional expectation of the desired quantities given high frequency data, which is an ${L^{2}}$-optimal statistic by construction. The corresponding stable central limit theorems are proved and a statistical application is discussed. In particular, this work extends the results of [20], which investigated the case of the Brownian motion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.