Abstract

Autoregressive moving average (ARMA) models are a fundamental tool in timeseries analysis that offer intuitive modeling capability and efficient predictors. Unfortunately, the lack of globally optimal parameter estimation strategies for these models remains a problem:application studies often adopt the simpler autoregressive model that can be easily estimated by maximizing (a posteriori) likelihood. We develop a (regularized, imputed) maximum likelihood criterion that admits efficient global estimation via structured matrix norm optimization methods. An empirical evaluation demonstrates the benefits of globally optimal parameter estimation over local and moment matching approaches.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.