Abstract

We derive the optimal input states and the optimal quantum measurements for estimating the unitary action of a given symmetry group, showing how the optimal performance is obtained with a suitable use of entanglement. Optimality is defined in a Bayesian sense, as minimization of the average value of a given cost function. We introduce a class of cost functions that generalizes the Holevo class for phase estimation, and show that for states of the optimal form all functions in such a class lead to the same optimal measurement. A first application of the main result is the complete proof of the optimal efficiency in the transmission of a Cartesian reference frame. As a second application, we derive the optimal estimation of a completely unknown two-qubit maximally entangled state, provided that N copies of the state are available. In the limit of large N, the fidelity of the optimal estimation is shown to be 1-3/(4N).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.