Abstract
ABSTRACTEstimating the genetic relatedness between two traits based on the genome-wide association data is an important problem in genetics research. In the framework of high-dimensional linear models, we introduce two measures of genetic relatedness and develop optimal estimators for them. One is genetic covariance, which is defined to be the inner product of the two regression vectors, and another is genetic correlation, which is a normalized inner product by their lengths. We propose functional de-biased estimators (FDEs), which consist of an initial estimation step with the plug-in scaled Lasso estimator, and a further bias correction step. We also develop estimators of the quadratic functionals of the regression vectors, which can be used to estimate the heritability of each trait. The estimators are shown to be minimax rate-optimal and can be efficiently implemented. Simulation results show that FDEs provide better estimates of the genetic relatedness than simple plug-in estimates. FDE is also applied to an analysis of a yeast segregant dataset with multiple traits to estimate the genetic relatedness among these traits. Supplementary materials for this article are available online.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.