Abstract

In this paper we introduce a new methodology to determine an optimal coefficient of penalized functional regression. We assume the dependent, independent variables and the regression coefficients are functions of time and error dynamics follow a stochastic differential equation. First we construct our objective function as a time dependent residual sum of square and then minimize it with respect to regression coefficients subject to different error dynamics such as LASSO, group LASSO, fused LASSO and cubic smoothing spline. Then we use Feynman-type path integral approach to determine a Schr¨odinger-type equation which have the entire information of the system. Using first order conditions with respect to these coefficients give us a closed form solution of them.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.