Abstract

Summary Motivated by the problem of estimating bacterial growth rates for genome assemblies from shotgun metagenomic data, we consider the permuted monotone matrix model $Y=\Theta\Pi+Z$ where $Y\in \mathbb{R}^{n\times p}$ is observed, $\Theta\in \mathbb{R}^{n\times p}$ is an unknown approximately rank-one signal matrix with monotone rows, $\Pi \in \mathbb{R}^{p\times p}$ is an unknown permutation matrix, and $Z\in \mathbb{R}^{n\times p}$ is the noise matrix. In this article we study estimation of the extreme values associated with the signal matrix $\Theta$, including its first and last columns and their difference. Treating these estimation problems as compound decision problems, minimax rate-optimal estimators are constructed using the spectral column-sorting method. Numerical experiments on simulated and synthetic microbiome metagenomic data are conducted, demonstrating the superiority of the proposed methods over existing alternatives. The methods are illustrated by comparing the growth rates of gut bacteria in inflammatory bowel disease patients and control subjects.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.