Abstract
In the first part of this article, a new mixed method is proposed and analyzed for parabolic integro-differential equations (PIDE) with nonsmooth initial data. Compared to the standard mixed method for PIDE, the present method does not bank on a reformulation using a resolvent operator. Based on energy arguments combined with a repeated use of an integral operator and without using parabolic type duality technique, optimal L 2 -error estimates are derived for semidiscrete approximations, when the initial condition is in L 2 . Due to the presence of the integral term, it is, further, observed that a negative norm estimate plays a crucial role in our error analysis. Moreover, the proposed analysis follows the spirit of the proof techniques used in deriving optimal error estimates for finite element approximations to PIDE with smooth data and therefore, it unifies both the theories, i.e., one for smooth data and other for nonsmooth data. Finally, we extend the proposed analysis to the standard mixed method for PIDE with rough initial data and provide an optimal error estimate in L 2 , which improves upon the results available in the literature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.