Abstract
In this paper we consider a model elliptic optimal control problem with finitely many state constraints in two and three dimensions. Such problems are challenging due to low regularity of the adjoint variable. For the discretization of the problem we consider continuous linear elements on quasi-uniform and graded meshes separately. Our main result establishes optimal a priori error estimates for the state, adjoint, and the Lagrange multiplier on the two types of meshes. In particular, in three dimensions the optimal second order convergence rate for all three variables is possible only on properly refined meshes. Numerical examples at the end of the paper support our theoretical results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.