Abstract

This paper studies the stabilization of optimal equilibrium profiles in nonisothermal plug-flow tubular reactors actuated by a heat exchanger that acts as a distributed control input. As a first result, we show that the heat exchanger temperature that achieves the minimal value of the steady-state reactant concentration at the outlet is the maximal allowed one. Then, a control strategy is proposed to reach these optimal equilibrium profiles. As main results, we prove that the control law stabilizes exponentially the nonlinear dynamics around the optimal equilibrium while it converges to the optimal heat exchanger temperature. In addition we show that the control law is optimal for some cost criterion of infinite-horizon integral type. Finally, the main results are illustrated with some numerical simulations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.