Abstract

How to optimize the allocation of enzymes in metabolic pathways has been a topic of study for many decades. Although the general problem is complex and nonlinear, we have previously shown that it can be solved by convex optimization. In this paper, we focus on unbranched metabolic pathways with simplified enzymatic rate laws and derive analytic solutions to the optimization problem. We revisit existing solutions based on the limit of mass-action rate laws and present new solutions for other rate laws. Furthermore, we revisit a known relationship between flux control coefficients and enzyme abundances in optimal metabolic states. We generalize this relationship to models with density constraints on enzymes and metabolites, and present a new local relationship between optimal reaction elasticities and enzyme amounts. Finally, we apply our theory to derive simple kinetics-based formulae for protein allocation during bacterial growth.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.