Abstract

An optimal engineering design problem is challenging because nonlinear objective functions usually need to be evaluated in a high-dimensional design space. This article presents a data-mining–aided optimal design method, that is able to find a competitive design solution with a relatively low computational cost. The method consists of four components: (1) a uniform-coverage selection method, that chooses design representatives from among a large number of original design alternatives for a nonrectangular design space; (2) feature functions, of which evaluation is computationally economical as the surrogate for the design objective function; (3) a clustering method, that generates a design library based on the evaluation of feature functions instead of an objective function; and (4) a classification method to create the design selection rules, eventually leading us to a competitive design. Those components are implemented to facilitate the optimal fixture layout design in a multistation panel assembly process. The benefit of the data-mining–aided optimal design is clearly demonstrated by comparison with both local optimization methods (e.g., simplex search) and random search-based optimizations (e.g., simulated annealing).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.