Abstract

This paper studies beamforming techniques for energy efficiency maximization (EEmax) in multiuser multiple-input single-output (MISO) downlink system. For this challenging nonconvex problem, we first derive an optimal solution using branch-and-reduce-and-bound (BRB) approach. We also propose two low-complexity approximate designs. The first one uses the well-known zero-forcing beamforming (ZFBF) to eliminate inter-user interference so that the EEmax problem reduces to a concave-convex fractional program. Particularly, the problem is then efficiently solved by closed-form expressions in combination with the Dinkelbach's approach. In the second design, we aim at finding a stationary point using the sequential convex approximation (SCA) method. By proper transformations, we arrive at a fast converging iterative algorithm where a convex program is solved in each iteration. We further show that the problem in each iteration can also be approximated as a second-order cone program (SOCP), allowing for exploiting computationally efficient state-of-the-art SOCP solvers. Numerical experiments demonstrate that the second design converges quickly and achieves a near-optimal performance. To further increase the energy efficiency, we also consider the joint beamforming and antenna selection (JBAS) problem for which two designs are proposed. In the first approach, we capitalize on the perspective reformulation in combination with continuous relaxation to solve the JBAS problem. In the second one, sparsity-inducing regularization is introduced to approximate the JBAS problem, which is then solved by the SCA method. Numerical results show that joint beamforming and antenna selection offers significant energy efficiency improvement for large numbers of transmit antennas.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call