Abstract
We propose energy-conserving discontinuous Galerkin (DG) methods for symmetric linear hyperbolic systems on general unstructured meshes. Optimal a priori error estimates of order k+1 are obtained for the semi-discrete scheme in one dimension, and in multi-dimensions on Cartesian meshes when tensor-product polynomials of degree k are used. A high-order energy-conserving Lax-Wendroff time discretization is also presented.Extensive numerical results in one dimension, and two dimensions on both rectangular and triangular meshes are presented to support the theoretical findings and to assess the new methods. One particular method (with the doubling of unknowns) is found to be optimally convergent on triangular meshes for all the examples considered in this paper. The method is also compared with the classical (dissipative) upwinding DG method and (conservative) DG method with a central flux. It is numerically observed for the new method to have a superior performance for long time simulations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.