Abstract

This paper presents a preliminary design and analysis of an optimal energy management and control system for a power-split hybrid electric vehicle (HEV) using hybrid dynamical control system theory and design tools. The hybrid dynamical system theory is applied to formulate HEV powertrain dynamical system in which the interactions of discrete and continuous dynamics are involved. The Sequential Quadratic Programming (SQP) method is applied to optimize power distribution. An improved dynamic programming method is employed to determine the optimal power distribution and the vehicle operating mode transitions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.