Abstract

Recently, the use of distributed power generation systems (DPGSs) based on renewable energy resources is increasingly being pursued as a supplement and a reliable alternative to the large traditional energy sources. For it, power-electronic interface technologies and control have also emerged as the most important key elements in the area of energy management and integrating DPGSs. The specification of a power-electronic interface is subject to several requirements that are related not only to the DPGS itself but also to its interactions with the power system especially where the utility grid is subject to events that can potentially lead to large-scale disturbances or even to its collapse if it operates near its capacity without fault margin. This study deals, first, with an optimized energy management strategy and, second, with a newly-conceived control strategy called symmetrical components control algorithm (SCCA) that was proposed for four-leg three-phase grid-connected voltage source inverter (VSI) used for DPGSs with wind–solar–battery sources. A mechanism of negative and zero sequences injection based on the control of ([Formula: see text]) current coordinates has been introduced. The performance of entire control system, to enhance the unbalanced fault ride-through capability of DPGSs, has been evaluated by time domain simulations with MATLAB/Simulink. Advantages of the combined active–reactive control ensuring both current and voltage controls have been achieved compared to the majority of already published strategies. The distinct features of the proposed SCCA strategy prove that it allows to meet the requirements for grid interconnection and the new stricter standards with respect to power quality, safe running, and islanding protection.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call