Abstract

The decarbonization of many heavy power-consuming industries is dependent on the integration of renewable energy sources and energy storage systems in isolated autonomous power systems. The optimal energy management in such schemes becomes harder due to the increased complexity and stability requirements, the rapidly varying operating conditions and uncertainty of renewable sources, the conflicting objectives across different timescales, the limited amount of reliable power sources and energy storage. The state of charge management when energy storage is used for multiple services, such as optimal scheduling and frequency support, is one of the most notorious problems in this context. To address this issue, an optimal energy management system is proposed in this paper. It co-optimizes the primary frequency control layer and the dispatch schedule of conventional generators and energy storage by taking advantage of an algorithm that provides adaptive active power demand uncertainty quantification, theoretical guarantees for frequency stability, and bounds for the reserves for frequency support assigned to the energy storage system. A pattern-based reformulation of the frequency stability constraints is derived enabling the efficient solution of the involved optimization problem, being a test case of an isolated offshore oil and gas platform presented for validation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.