Abstract

Energy consumption schedulers have been widely adopted for energy management in smart microgrids. Energy management aims to alleviate energy expenses and peak-to-average ratio (PAR) without compromising user comfort. This work proposes an energy consumption scheduler using heuristic optimization algorithms: Binary Particle Swarm Optimization (BPSO), Wind Driven Optimization (WDO), Genetic Algorithm (GA), Differential Evolution (DE), and Enhanced DE (EDE). The energy consumption scheduler based on these algorithms under a price-based demand response program creates a schedule of home appliances. Based on the energy consumption behavior, appliances within the home are classified as interruptible, noninterruptible, and hybrid loads, considered as scenario-I, scenario-II, and scenario-III, respectively. The developed model based on optimization algorithms is the more appropriate solution to achieve the desired objectives. Simulation results show that the expense and PAR of schedule power usage in each scenario are less compared to the without-scheduling case.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.