Abstract
Solving wave propagation problems within heterogeneous media has been of great interest and has a wide range of applications in physics and engineering. The design of numerical methods for such general wave propagation problems is challenging because the energy conserving property has to be incorporated in the numerical algorithms in order to minimize the phase or shape errors after long time integration. In this paper, we focus on multi-dimensional wave problems and consider linear second-order wave equation in heterogeneous media. We develop and analyze an LDG method, in which numerical fluxes are carefully designed to maintain the energy conserving property and accuracy. Compatible high order energy conserving time integrators are also proposed. The optimal error estimates and the energy conserving property are proved for the semi-discrete methods. Our numerical experiments demonstrate optimal rates of convergence, and show that the errors of the numerical solutions do not grow significantly in time due to the energy conserving property.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.