Abstract
In the theory of function spaces it is an important problem to describe the differential properties for the convolution u = G * f in terms of the behavior of kernel near the origin, and at the infinity. In our paper the differential properties of convolution are characterized by their modulus of continuity of order k ∈ N in the uniform norm. The kernels of convolution generalize the classical kernels determining the Bessel and Riesz potential. They admit non-power behavior near the origin. The order-sharp estimates are obtained for moduli of continuity of the convolution in the uniform norm as well as for continuity envelope function of generalized Bessel potentials. Such estimates admit sharp embedding theorems into a Calderon space and imply estimates for the approximation numbers of the embedding operator.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.