Abstract

To achieve economical compensation for the huge-capacity negative sequence currents generated by high-speed railway load, an electromagnetic hybrid compensation system (EHCS) and control strategy is proposed. The EHCS is made up of a small-capacity railway static power conditioner (RPC) and a large-capacity magnetic static var compensator (MSVC). Compared with traditional compensation methods, the EHCS makes full use of the SVC’s advantages of economy and reliability and of RPC’s advantages of technical capability and flexibility. Based on the idea of injecting a negative sequence, the compensation principle of the EHCS is analyzed in detail. Then the minimum installation capacity of an EHCS is theoretically deduced. Furthermore, a constraint optimization compensation strategy that meets national standards, which reduces compensation capacity further, is proposed. An experimental platform based on a digital signal processor (DSP) and a programmable logic controller (PLC) is built to verify the analysis. Simulated and experimental results are given to demonstrate the effectiveness and feasibility of the proposed method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.