Abstract
AbstractThis research proposes a new comprehensive methodology aimed at optimally managing electric vehicle (EV) charging in an unbalanced distribution system with consideration of grid capacity and voltage quality constraints as well as the stochastic driving and charging behaviour of EV users. A data mining algorithm is designed to generate suitable spatial and temporal EV and charger input data for EV scheduling that is decomposed into two subproblems. The lower‐level subproblem identifies the maximum load at each node and time and the upper‐level subproblem allocates charging slots for each EV being charged. Both subproblems are solved by developed particle swarm optimisation (PSO) algorithms. The effectiveness and robustness of the algorithms have been thoroughly validated by conducting rigorous tests on a modified IEEE 37‐bus distribution system with different EV penetration scenarios. The test results have confirmed the algorithms' performance in accommodating the increasing load associated with EV charging and successfully improving the system performance by maximising the system load factor, minimising load unbalance, and reducing the system power loss. All operational constraints on node voltages, and distribution transformer and feeder capacities of the existing power distribution infrastructure are fully respected while maintaining high user satisfaction represented by the average state of charge (SoC) of all EVs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.