Abstract

Alcoholism can be analyzed by Electroencephalogram (EEG) data. Finding an optimal subset of EEG channels for alcoholism detection is a challenging task. The paper reports a new methodology for the detection of optimal channels for alcoholism analysis using EEG data. The proposed technique employs the Empirical Mode Decomposition (EMD) technique to extract the amplitude and frequency modulated bandwidth features from the Intrinsic Mode Function (IMF) and ensemble subspace K-NN as a classifier to classify alcoholics and normal. The optimum channels are selected, using a harmony search algorithm. The fitness value of discrete binary harmony search (DBHS) optimization algorithms is calculated using accuracy and sensitivity achieved by the ensemble subspace K-Nearest Neighbor classifier. Experimental outcomes indicate that the optimal channel selected by the harmony search algorithm has biological inference related to the alcoholic subject. The proposed approach reports a classification accuracy of 93.87%, with only 12 detected EEG channels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.