Abstract
Let G be a multigraph containing no minor isomorphic to or (where denotes without one of its edges). We show that the chromatic index of G is given by , where is the maximum valency of G and is defined as (w(E(S)) being the number of edges in the subgraph induced by S). This result partially verifies a conjecture of Seymour [J. Combin. Theory (B) 31 (1981), pp. 82-94] and is actually a generalization of a result proven by Seymour [Combinatorica 10 (1990), pp. 379-392] for series-parallel graphs. It is also equivalent to the following statement: the matching polytope of a graph containing neither nor as a minor has the integer decomposition property.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.