Abstract

In the present study, a method is proposed to solve the problem of economic load distribution in MGs, meet the challenges arising from the use of renewable sources periodically, ensure the stable performance of MGs, and minimize the operating cost of MGs considering combined heat and power (CHP) units and reserve system. Moreover, demand-side management (DSM) as a tool is employed to reduce the operating cost of the power system. Therefore, the proposed model for optimal operation of MGs using DSM is formulated as an optimization problem. Load shifting is considered as an effective solution in DSM. Minimizing the total operating cost of the system is considered as the objective function of this problem. Problem constraints include operating and executive constraints for load shifting. Finally, the model is solved using the developed adolescent identity search algorithm (AISA). In the developed model, Powell's local search operator is employed to improve the efficiency of searching for the optimal solution. Due to the existing uncertainties in load consumption and day-ahead market price, the method is presented as a scenario-based stochastic energy management problem. The results reveal the proposed method is highly efficient in solving the problem, and load management can improve economic indicators.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call