Abstract

Exploiting the full potential of hybrid electric vehicles (HEVs) requires suitable (i) route selection and (ii) power management. Due to coupling of the two subproblems, an integrated optimization problem is desired, i.e., optimizing simultaneously the route selection and the split between combustion engine and electric motor over the entire route selection. The resulting optimal route and vehicle operation can be used as a basis for a subordinate vehicle controller. We present an eco-routing approach that embeds a hybrid (mechanistic/data-driven) model of the HEV powertrain in an integrated routing and power management optimization problem. Formulating the integrated routing problem with the hybrid model yields a mixed-integer bilinear program which we reformulate and solve a mixed-integer linear program using a state-of-the-art solver. The results show the validity of the developed hybrid powertrain model and demonstrate that the eco routing approach with the powertrain model embedded can be applied to large-scale problems. We consider optimization for minimal travel time and minimum fuel consumption. The latter results in fuel demand reductions up to 70 %. Alternatively, we minimize the fuel consumption while constraining the travel time to a maximum value resulting in up to 50 % fuel demand reductions. The highest fuel demand reductions are achieved in urban environments. The entire framework is written in python and provided as an open-source version (MIT License) under <uri xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">https://git.rwth-aachen.de/avt-svt/public/optimal-routing</uri> that can readily be applied.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.