Abstract

Energy consumption and emissions of a vehicle are highly influenced by road contexts and driving behavior. Especially, driving on horizontal curves often necessitates a driver to brake and accelerate, which causes additional fuel consumption and emissions. This paper proposes a novel optimal ecological (eco) driving scheme (EDS) using nonlinear model predictive control (MPC) considering various road contexts, i.e., curvatures and surface conditions. Firstly, a nonlinear optimization problem is formulated considering a suitable prediction horizon and an objective function based on factors affecting fuel consumption, emissions, and driving safety. Secondly, the EDS dynamically computes the optimal velocity trajectory for the host vehicle considering its dynamics model, the state of the preceding vehicle, and information of road contexts that reduces fuel consumption and carbon emissions. Finally, we analyze the effect of different penetration rates of the EDS on overall traffic performance. The effectiveness of the proposed scheme is demonstrated using microscopic traffic simulations under dense and mixed traffic environment, and it is found that the proposed EDS substantially reduces the fuel consumption and carbon emissions of the host vehicle compared to the traditional (human-based) driving system (TDS), while ensuring driving safety. The proposed scheme can be employed as an advanced driver assistance system (ADAS) for semi-autonomous vehicles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.