Abstract

In this study, we design and implement an algorithm for optimal dynamic spectrum access (DSA) in a shared spectrum system where the primary user (PU) is a Long Term Evolution (LTE) system. The cumulative hazard function from survival analysis is used to predict the remaining idle time available in each channel for secondary user (SU) transmission subject to a probability of successful completion. Optimal allocation of physical resource blocks (PRBs) for the SU is shown to be a variation of the unbounded knapsack problem. We evaluate the algorithm performance using three data sets collected from real LTE systems. The algorithms achieve good white space utilization and have a measured probability of interference around the target threshold.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.