Abstract

We present a single-resource finite-horizon Markov decision process approach for a firm that seeks to maximize expected revenues by dynamically adjusting the menu of offered products and their prices to be selected from a finite set of alternative values predetermined as a matter of policy. Consumers choose among available products according to an attraction choice model, a special but widely applied class of discrete choice models. The fractional substructure inherent to attraction choice models enables the derivation of structural properties that significantly simplify the computation of an optimal policy. We show that the more capacity (or less time) is remaining, the lower are the optimal prices. We develop an exact solution procedure for preprocessing and recursively solving price selection problems that clearly outperforms current revenue management approaches with respect to computational complexity. Furthermore, we demonstrate that the potential revenue improvements from dynamic compared to fixed pricing can be significant, ranging from 4.5% up to 149% for selected examples from the literature. Extensions to multiple resources and to related discrete choice models are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.