Abstract

Extracting and exploiting the flexibility of electric demand has been shown to reduce the needs of network upgrades and generation capacity increases. Demand Response (DR) in considered as one of the few available solutions for accessing the untapped energy potential of small and medium customers. Over the past decade, rigorous research has produced significant results in optimally dispatching DR in an attempt to maximize flexibility extraction. However, the vast majority of works assumes a “happy path” scenario in which DR requests are always successfully completed. Hence, there is a large gap in the literature that fails to account for non-deterministic factors that manifest in practical deployments, e.g., the stochasticity of end-user behavior that can drastically influence the DR's outcomes. Investing on that notion, a novel, distributed, multi-agent system (MAS) that aggregates consumers and prosumers and handles automatically OpenADR-compliant DR requests is introduced, following virtual power plant (VPP) principles. Agents of the proposed MAS are able to service DR events originating from a higher level, e.g., Aggregators or Utilities, and optimally dispatch them to their assigned customers. The proposed framework ensures 100% DR success rate, compared to conventional methods, by not only optimally exploiting aggregated flexibility through a combination of clustering and optimisation engines, but also through a dynamic, bi-directional DR matchmaking process that can mitigate observed deviations both internally (intra), as well as, externally (inter) in real-time. Via experimentation, we demonstrate the framework's efficiency in ensuring technical DR fault-tolerance along with its ability to deliver savings of up to 3 orders of magnitude to Aggregators and the customers serving the DR requests.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.