Abstract

In this paper, we introduce a novel approach for power allocation in cellular networks. In our model, we use sigmoidal-like utility functions to represent different users’ modulation schemes. Each utility function is a representation of the probability of successfully transmitted packets per unit of power consumed by a user, when using a certain modulation scheme. We consider power allocation with utility proportional fairness policy, where the fairness among users is in utility percentage i.e. percentage of successfully transmitted packets of the corresponding modulation scheme. We formulate our power allocation optimization problem as a product of utilities of all users and prove that it is convex and therefore the optimal solution is tractable. We present a distributed algorithm to allocate base station powers optimally with priority given to users running lower modulation schemes while ensuring non-zero power allocation to users running higher modulation schemes. Our algorithm prevents fluctuation in the power allocation process and is capable of traffic and modulation dependent pricing policy. This can be used to flatten traffic and decrease the service price for users. We also compare our results with a benchmark algorithm and show that our algorithm performs better in allocating powers fairly to all users without dropping any user in order to maximize performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.