Abstract
We consider in this paper the optimal dividend problem for an insurance company whose uncontrolled reserve process evolves as a classical Cramér–Lundberg model with arbitrary claim-size distribution. Our objective is to find the dividend payment policy which maximizes the cumulative expected discounted dividend pay-outs until the time of bankruptcy imposing a ceiling on the dividend rates. We characterize the optimal value function as the unique bounded viscosity solution of the associated Hamilton–Jacobi–Bellman equation. We prove that there exists an optimal dividend strategy and that this strategy is stationary with a band structure. We study the regularity of the optimal value function. We find a characterization result to check optimality even in the case where the optimal value function is not differentiable. We construct examples where the claim-size distribution is smooth but the optimal dividend policy is not threshold and the optimal value function is not differentiable. We study the survival probability of the company under the optimal dividend policy. We also present examples where the optimal dividend policy has infinitely many bands even in the case that the claim-size distribution has a bounded density.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.