Abstract

We investigate the problem of optimal dividend distribution for a company in the presence of regime shifts. We consider a company whose cumulative net revenues evolve as a Brownian motion with positive drift that is modulated by a finite state Markov chain, and model the discount rate as a deterministic function of the current state of the chain. In this setting, the objective of the company is to maximize the expected cumulative discounted dividend payments until the moment of bankruptcy, which is taken to be the first time that the cash reserves (the cumulative net revenues minus cumulative dividend payments) are zero. We show that if the drift is positive in each state, it is optimal to adopt a barrier strategy at certain positive regime-dependent levels, and provide an explicit characterization of the value function as the fixed point of a contraction. In the case that the drift is small and negative in one state, the optimal strategy takes a different form, which we explicitly identify if there are two regimes. We also provide a numerical illustration of the sensitivities of the optimal barriers and the influence of regime switching.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.