Abstract

In this article, we consider inventory-distribution planning under uncertainty for industrial gas supply chains by extending the continuous approximation solution strategy proposed in part I of this work. A stochastic inventory approach is proposed and incorporated into a multiperiod two-stage stochastic mixed-integer nonlinear programming (MINLP) model to handle uncertainty in demand and loss or addition of customers. This nonconvex MINLP formulation takes into account customer synergies and simultaneously predicts the optimal sizes of customers’ storage tanks, the safety stock levels, and the estimated delivery cost for replenishments. To globally optimize this stochastic MINLP problem with modest computational time, we develop a tailored branch-and-refine algorithm based on successive piecewise-linear approximation. The solution from the stochastic MINLP is fed into a detailed routing model with a shorter planning horizon to determine the optimal deliveries, replenishments, and inventories. A clustering-based heuristic is proposed for solving the routing model with reasonable computational effort. Three case studies including instances with up to 200 customers are presented to demonstrate the effectiveness of the proposed stochastic models and solution algorithms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.