Abstract

This paper addresses the problem of optimizing the distribution of the support of the internal null control of minimal L 2 -norm for the 1-D heat equation. A measure constraint is imposed on the support but no topological assumption such as the number of connected components. Therefore, the problem typically lacks of solution in the class of characteristic functions and needs of relaxation. We show that the relaxed formulation is obtained by replacing the set of characteristic functions by its convex envelope. The proof requires that the observability constant related to the control problem be uniform with respect to the support, property which is obtained by the control transmutation method. The optimality conditions of the relaxed problem as well as the case where the number of connected components is fixed a priori are also discussed. Several numerical experiments complete the study and suggest the ill-posedness of the problem in contrast to the wave situation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.