Abstract

When two acoustic cavities are connected through an opening, the acoustical characteristics of the resulting double cavity can be considerably affected by the opening. Typical examples include a passenger vehicle where a passenger compartment cavity is acoustically coupled with the trunk compartment cavity through small holes in the package tray. Although the locations and cross-sectional areas of these holes are known to significantly affect the acoustical characteristics, there is no systematic design method available to determine an optimal multi-hole distribution. Since the hole distribution problem can be formulated as a topology optimization problem, the eigenfrequencies of the double cavity system having a partition with holes can be controlled by an optimal multi-hole distribution solved in the topology optimization setting. After demonstrating that it is difficult to find satisfactory results by using only a single initial guess, significant efforts are made to develop a systematic procedure to generate a suitable set of initial guesses. The proposed method uses the so-called cross-modes that appear due to the presence of a hole. The obtained results are compared with those obtained by using randomly-generated initial guesses. In addition, the physics behind the optimized results, obtained by using the developed method, is explained by the concept of the added length associated with the cross-modes of evanescent waves. The effectiveness of the developed approach is tested with a three-dimensional simplified half-scaled car cavity connected to the car trunk cavity by a package tray with holes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.