Abstract
The problem of decision fusion in distributed sensor systems is considered. Distributed sensors pass their decisions about the same hypothesis to a fusion center that combines them into a final decision. Assuming that the sensor decisions are independent of each other for each hypothesis, the authors provide a general proof that the optimal decision scheme that maximizes the probability of detection at the fusion for fixed false alarm probability consists of a Neyman-Pearson test (or a randomized N-P test) at the fusion and likelihood-ratio tests at the sensors. >
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Aerospace and Electronic Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.