Abstract
Considering the waste incineration plant-carbon capture (WIP-CC) system and market mechanisms, the optimal dispatching strategy of nearly-zero carbon integrated energy system (NZC-IES) is proposed. The incineration of large amounts of Municipal Solid Waste can result in significant carbon emission and air pollution. However, lack of consideration of mechanisms for carbon processing and environmental protection will prevent the development of NZC-IES. Accordingly, a novel mixed integer nonlinear mathematical model, NZC-IES, is established that minimizes the total cost and controls carbon emission and air pollution. Unlike previous studies of optimal dispatching for WIP-CC system, the climate and health costs of WIP and the social costs of energy sources for CC are considered. A model of adjustable thermoelectric ratios for WIP and a model for CC with the storage tanks are established to enhance the flexibility of the thermoelectric output. Also, demand response model and ladder-type carbon trading model are developed to serve for NZC-IES. Case studies reveal that the proposed optimal dispatching strategy can realize the waste to energy utilization and low-carbon emission with economic performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.