Abstract

Rural energy is an important part of China’s energy system, and, as China’s agricultural modernization continues, integrated agricultural energy systems (AIES) will play an increasingly important role. However, most of China’s existing rural energy systems are inefficient, costly to run, and pollute the environment. Therefore, meeting various agricultural energy needs while balancing energy efficiency and costs is an important issue in the design and dispatch of integrated agricultural energy systems. In conjunction with hybrid energy storage (HES), which has been developed and matured in recent years, this paper proposes a new type of AIES structure and optimal dispatching strategy that incorporates HES, biogas generation (BG), P2G, and an electric boiler (EB) to provide new ideas for problem solving. Firstly, the structure of AIES is introduced and the mathematical model of the equipment of the system is described; then, an economic optimal dispatching model with the objective of minimizing the comprehensive operating costs of the system is established, and the output of each piece of energy conversion equipment is controlled to achieve the effect of improving the system’s operating performance and reducing the operating costs. The results show that the system with HES and multi-energy coupling equipment has a 20% lower overall cost, 23.2% lower environmental protection cost, and 51% higher energy efficiency than the original system; the stored power of energy storage equipment in the HES mode is primarily determined by the change in demand of the corresponding load, and the number of conversions between different energy sources is limited. The energy conversion loss is minimal.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call