Abstract
Despite criticism for loss of information and power, dichotomization of variables is still frequently used in social, behavioral, and medical sciences, mainly because it yields more interpretable conclusions for research outcomes and is useful for decision making. However, the artificial choice of cut-points can be controversial and needs proper justification. In this work, we investigate the properties of point-biserial correlation after dichotomization with underlying bimodal Gaussian mixture distributions. We propose a dichotomous grouping procedure that considers the largest standardized difference in group mean while minimizing information loss.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.