Abstract

Online quality control methods emphasize manufacturing processes to attain maximum conformance with respect to the specifications of the concerned quality characteristics of a product. One key factor that affects the effectiveness of these methods is the diagnosis interval. In this paper, the existing cost model along with its cost components for online quality control methods has been revisited and modified by incorporating new variables like the rate of production, the loss due to false alarm, the loss due to non-detection of process abnormalities, and considering a workable break-up of diagnosis cost for finding the optimal diagnosis interval from the perspective of present-day manufacturing engineering. As already mentioned, the proposed cost model has not ignored the loss due to the generation of defective items as well as the adjustment cost available in the pertinent literature. The modified cost function thus proposed has been appropriately minimized to obtain the corresponding optimal diagnosis interval. The proposed methodology has been compared numerically with other methodologies to establish its effectiveness. The cornerstone of the proposed methodology lies in reinforcing its effectiveness through a real-life case example in manufacturing. Sensitivity analysis has also been carried out for the real-life case example to fortify the proposed methodology.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call