Abstract
This paper presents a novel and efficient optimization approach based on the Artificial Ecosystem Optimization (AEO) algorithm to solve the problem of finding optimal location and sizing of Distributed Generation (DGs) in radial distribution systems. The objective is to satisfy a fluctuating demand in a constant and instantaneous way while respecting the requirements of power loss reduction, operating cost minimization and voltage profile improvement within the equality and inequality constraints. The robustness of the proposed technique in terms of solution quality and convergence characteristics is evaluated using the IEEE-33 bus radial distribution network test system. The simulation results are compared with those of other methods recently used in the literature for the same test system. The experimental outcomes show that the proposed AEO approach is comparatively able to achieve a higher quality solution within a timeliness of computation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.