Abstract
In order to improve the vibratory roller ride comfort, a multi-objective optimization method based on the improved genetic algorithm NSGA-II is proposed to optimize the design parameters of cab’s isolation system when vehicle operates under the different conditions. To achieve this goal, 3D nonlinear dynamic model of a single drum vibratory roller was developed based on the analysis of the interaction between vibratory roller and soil. The weighted r.m.s acceleration responses of the vertical driver’s seat, pitch and roll angle of the cab are chosen as the objective functions. The optimal design parameters of cab’s isolation system are indentified based on a combination of the vehicle nonlinear dynamic model of Matlab/Simulink and the NSGA - II genetic algorithm method. The results indicate that three objective function values are reduced significantly to improve vehicle ride comfort.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.